Chapter 14

Back Home

14.5

Problem 1

Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.
$$w = f(r,s,t),$$ where $$r = r(x,y), s = s(x,y), t = t(x,y)$$ then $$w$$ $$r,s,t$$ $$xy,xy,xy$$

14.6

Problem 1

Find the directional derivative of the function at the given point in the direction of the vector v.
$$g(p, q) = p^4 − p^2q^3$$ $$(1, 1)$$ $$v = i + 6j$$ $$\frac{∂g}{∂p} = 4p^3-2pq^3$$ $$\frac{∂g}{∂q} = -3p^2q^2$$ $$\vec U = \frac{1}{ \sqrt{1^2+6^2}} = \frac{1}{ \sqrt{37}}$$ $$\vec U = \frac{1}{ \sqrt{37}}\lt i+6j\gt$$ $$∇g(p,q) = (4p^3-2pq^3) + (-3p^2q^2)$$ $$∇g(1,1) = (4(1)^3-2(1)(1)^3) + (-3(1)^2(1)^2)$$ $$Dug = ∇g(1,1) \cdot \vec U$$ $$\lt 2i-3j\gt \cdot \frac{1}{ \sqrt{37}} \lt i+6j \gt$$ $$ = \frac{-16}{ \sqrt{37}}$$