UMBC CMPE306 Fall 2019

Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019.

Page 1 of 6

This is the last homework assignment. Some of the content will require the lectures of December 4.

1:

Find v(t) for the circuit below.

Let's use meshes, clockwise mesh current in both meshes, \mathbf{i}_1 on the left, \mathbf{i}_2 on

the right.
$$\omega = 4$$
, $\mathbf{Z}_1 = j(4r/s)(2H) = j8\Omega$. $\mathbf{Z}_2 = j(4r/s)(1H) = j4\Omega$.

$$\mathbf{Z}_{M} = j(4r/s)(1H) = j4\Omega$$

KVL around left mesh

$$-2\angle 0^{\circ} + 4\mathbf{i}_{1} + j8\mathbf{i}_{1} - j4\mathbf{i}_{2} = 0$$

$$(4+j8)\mathbf{i}_1 - j4\mathbf{i}_2 = 2+j0$$

KVL around right mesh

$$j4i_2 + 2i_2 - j4i_1 = 0$$

$$-j4\mathbf{i}_1 + (2+j4)\mathbf{i}_2 = 0$$

$$\begin{bmatrix} 4+j8 & -j4 \\ -j4 & (2+j4) \end{bmatrix} \begin{bmatrix} \mathbf{i}_1 \\ \mathbf{i}_2 \end{bmatrix} = \begin{bmatrix} 2+j0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{i}_1 \\ \mathbf{i}_2 \end{bmatrix} = \begin{bmatrix} 0.2059 + j \ 0.1765 \\ 0.2353 - j \ 0.0588 \end{bmatrix}$$

$$v = 2\mathbf{i}_2 = 0.47 - j0.12 = 0.485 \angle -14^{\circ}$$

$$v(t) = 0.481\cos(4t - 14^{\circ})$$

2:

Solve for v(t) in the circuit below

UMBC CMPE306 Fall 2019

Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019. Page 2 of 6

$$V = 6 \angle \frac{\pi}{3} = 6 \angle 60^{\circ} = 3.0000 + j5.1962$$
, $\omega = 20\pi = 62.83$ rad/sec

$$\mathbf{Z}_{N} = j\omega 2H = j125.7\Omega$$

$$\mathbf{Z}_1 = j\omega 4H = j251.3\Omega$$

$$\mathbf{Z}_2 = j\omega 2H = j125.7\Omega$$

$$\mathbf{Z}_3 = \frac{1}{j\omega(0.5 \times 10^{-3} \,\mathrm{F})} = -j31.83\Omega$$

Define clockwise mesh currents

In left hand mesh

$$-6\angle 60^{\circ} + 800\mathbf{I}_{1} + j251.3\mathbf{I}_{1} - j125.7\mathbf{I}_{2} = 0$$

$$(800 + j251.3)\mathbf{I}_1 - j125.7\mathbf{I}_2 = 6\angle 60^{\circ}$$

In right hand mesh

$$-j31.8\mathbf{I}_{2} + 300\mathbf{I}_{2} + 125.7\mathbf{I}_{2} - j125.7\mathbf{I}_{1} = 0$$

$$-j125.7\mathbf{I}_{1} + (300 - j31.8 + j125.7)\mathbf{I}_{2} = 0$$

$$\begin{bmatrix} (800 + j251.3) & -j125.7 \\ -j125.7 & (300 - j31.8 + j125.7) \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 6 \angle 60^{\circ} \\ 0 \end{bmatrix} = \begin{bmatrix} 3. + j5.2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} (800 + j251.3) & -j125.7 \\ -j125.7 & (300 + j93.8) \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 6\angle 60^{\circ} \\ 0 \end{bmatrix} = \begin{bmatrix} 3. + j5.2 \\ 0 \end{bmatrix}$$

$$v = 300I_{2}$$

3: Use mesh analysis to find i_x in the following circuit, when

 $i_s = 4\cos(600t)$, $v_s = 110\cos(600t + 30^\circ)$ Hint: Source transformation of the current source, after which the mesh current flows through both 800 mH and 1200 mH, inducing mutual inductance from each!

UMBC CMPE306 Fall 2019 Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019. Page 3 of 6

Convert the inductors and capacitors to reactances.

$$\begin{split} L_1 &= 800 \text{mH} = j600(0.8 \text{H}) = j480 \Omega \\ L_2 &= 1200 \text{mH} = j600(1.2 \text{H}) = j720 \Omega \\ M &= 600 \text{mH} = j600(0.6 \text{H}) = j360 \Omega \\ C &= 12 \mu \text{F} = \frac{1}{j600(1.2 \times 10^{-5} \text{F})} = -j139 \Omega \\ \text{(note that } 600 \text{mH} = \text{M} \leq \sqrt{L_1 L_2} = 980 \text{mH}) \end{split}$$

Transform i_s to $v_1 = i_s 200\Omega = 800 \cos(600t)$

We are computing i_x , and have voltage sources, so mesh analysis is appropriate.

Assume i_1 in the left mesh, i_2 in the right, both flowing clockwise

The mutual inductance subtracts $j\omega Mi_1$ twice in the i_1 mesh because i_1 flows into the L_1 dot and out of the L_2 dot. But we add the mutual inductance effect of i_2 because it flows into the L_2 dot, inducing a positive voltage at the L_1 dot. In the i_2 mesh there is only the self inductance of the i_1 current through the L_2 inductor and the mutual effect of i_1 in L_1 on L_2 . i_1 flows into the L_1 dot, inducing a positive voltage at the L_2 dot.

Keeping these in mind, we can proceed by inspection

Keeping these in mind, we can proceed by inspection
$$\begin{bmatrix} 200 + j480 + j720 - \underbrace{j360}_{L_1 \text{ effect}} & -j360 \\ \underbrace{-j720 + j360}_{L_1 \text{ effect}} & \underbrace{-j720 + j360}_{L_2 \text{ effect}} & \underbrace{-j720 + j360}_{I_1 \text{ due to } i_2} \\ --j720 + \underbrace{j360}_{On L_2 \text{ due } i_1} & j720 - j139 + 150 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = -\begin{bmatrix} -800 \angle 0^{\circ} \\ 110 \angle 30^{\circ} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 200 + j480 & -j360 \\ -j360 & 150. + j581 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 800 \\ -952.6 - j55 \end{bmatrix}$$
$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 1.2961 - j1.5643 \\ 0.8591 - j0.5835 \end{bmatrix}$$
$$i_2 = i_1 - i_2 = 0.4370 - j0.9808 = 1.07 \angle -66^{\circ}$$

UMBC CMPE306 Fall 2019 Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019. Page 4 of 6

4: Determine the inductance of the three series-connected inductors shown below.

Look at the total voltage across the 3 inductors.

$$v = \underbrace{j\omega L_1 I + j\omega L_2 I + j\omega L_3 I}_{\text{the self-inductance of the three inductors due to the common current, } I + \underbrace{\left(+ j\omega M_{12} I - j\omega M_{13} I \right)}_{\text{the effect of current } I \text{ flowing though the first inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the second inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the bird inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the bird inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the bird inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the bird inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the bird inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j\omega M_{12} I - j\omega M_{23} I \right)}_{\text{the effect of current } I \text{ flowing though the inductor on the voltages at the other two inducors, using the "dot" conventions} \\ \underbrace{\left(+ j$$

Factoring the common $j\omega$ factor and the common I factor from each term

$$v = j\omega LI$$
, where $L = L_1 + L_2 + L_3 + 2M_{12} - 2M_{23} - 2M_{31}$
= 10H + 12H + 8H + 2×6H - 2×6H - 2×4H
 $L=22H$

5:

The coils shown below have $L_1 = 40 \text{mH}$, $L_2 = 5 \text{mH}$, and k = 0.6. (Pay attention to the defined direction of the currents!) Find $i_1(t), v_2(t)$ given that

$$v_1(t) = 10\cos\omega t, i_2(t) = 2\sin\omega t, \omega = 2000 \text{ rad/sec}$$

UMBC CMPE306 Fall 2019 Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019. Page 5 of 6

 $V_2(t) = 10.65\cos 2000t$

$$\begin{split} V_1 &= i_1 \times j\omega L_1 - i_2 \times j\omega M \\ V_2 &= i_2 \times j\omega L_2 - i_1 \times j\omega M \\ M &= k\sqrt{L_1L_2} = 0.6\sqrt{40\times10^{-3}\times5\times10^{-3}} = 8.5\text{mH} \\ \text{From } V_1 \text{ equation above: } \frac{V_1 + i_2 \times j\omega M}{j\omega L_1} = i_1 \\ i_1 &= \frac{10 + \left(-j2\right)\left(j2000 \text{ r/s}\times8.5\times10^{-3}\Omega\text{-sec}\right)}{j\left(2000 \text{ r/s}\times40\times10^{-3}\Omega\text{-sec}\right)} \\ &= -j0.55 = 0.55\angle -90^\circ \\ \hline i_1(t) &= 0.55\sin2000t \\ \text{From } V_2 \text{ equation,} \\ V_2 &= (-j2\text{A})\times(j2000 \text{ r/s}\times5\times10^{-3}\Omega\text{-sec}) - (-j0.55\text{A})\times(j2000\text{r/s}\times8.5\times10^{-3}\Omega\text{-se}) \\ 10.65 + j0 \end{split}$$

6: Find n for the maximum power supplied to the 200 ohm load. Then determine the power to the 200 ohm load if n=10.

UMBC CMPE306 Fall 2019

Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019. Page 6 of 6

Transform the current source to get

$$v_{s} = 4 \times 5\Omega = 20 \angle 0^{\circ} \text{ V}.$$

Reflect the 200
$$\Omega$$
 to the primary side: $Z_{EQ} = \frac{Z}{n^2} = \frac{200\Omega}{n^2}$

With the voltage source transformation we have a voltage source and $5+3\Omega$ in series. So the voltage source and series resistance represents the Thevenin equivalent of the left (primary) side.

For maximum power transfer, $\mathbf{Z}_L = \mathbf{Z}_{TH}^* = 8\Omega = \frac{200\Omega}{n^2}$

$$n^2 = \frac{200}{8} = 25, \ n = 5.$$

If n = 10 then the reflected impedence is $\frac{200}{10^2} = 2\Omega$.

The primary current is
$$\frac{20\angle 0^{\circ}}{8\Omega + 2\Omega} = 2\angle 0^{\circ} A$$
.

The voltage across the load is $20 \angle 0^{\circ} \times \frac{2\Omega}{8\Omega + 2\Omega} = 4 \angle 0^{\circ} \text{V}$

$$P = \left| \mathbf{V}_{RMS} \mathbf{I}_{RMW}^* \right| \cos(\theta_v - \theta_i) = 8\cos(0) = 8W$$

7:

Obtain the transfer function $\mathbf{H}(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_i}$ of the following circuit. **Note** that there is a "typo" in the circuit figure, and the voltage source should be labeled \mathbf{V}_i .

 $\mathbf{H}(\omega) = \frac{\mathbf{V}_0}{\mathbf{V}_i}$. This is a series RLC circuit, and therefore a voltage divider.

$$\mathbf{H}(\omega) = \frac{2\Omega}{10 + 2 + \frac{1}{j\omega(1/8)}} = \frac{j2\omega/8}{1 + j10\omega/8} = \frac{j\omega/4}{1 + j\omega/0.8}$$