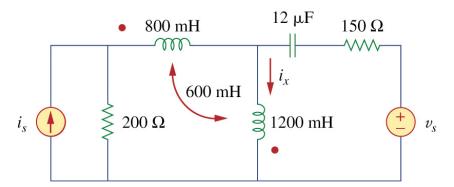

This is the last homework assignment. Some of the content will require the lectures of December 4.

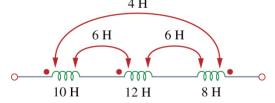
1: Find v(t) for the circuit below.



2: Solve for v(t) in the circuit below

3: Use mesh analysis to find i_x in the following circuit, when

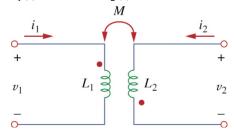
 $i_s = 4\cos(600t)$, $v_s = 110\cos(600t + 30^\circ)$ Hint: Source transformation of the current source, after which the mesh current flows through both 800 mH and 1200 mH, inducing mutual inductance from each!

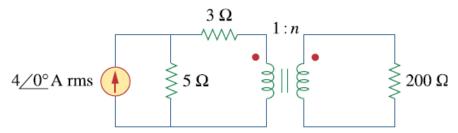


UMBC CMPE306 Fall 2019

Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019.

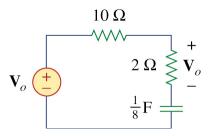
Page 2 of 3


4: Determine the inductance of the three series-connected inductors shown below.


5:

The coils shown below have $L_1 = 40 \text{mH}$, $L_2 = 5 \text{mH}$, and k = 0.6. (Pay attention to the defined direction of the currents!) Find $i_1(t), v_2(t)$ given that

$$v_1(t) = 10\cos\omega t, i_2(t) = 2\sin\omega t, \omega = 2000 \text{ rad/sec}$$


6: Find n for the maximum power supplied to the 200 ohm load. Then determine the power to the 200 ohm load if n=10.

7:

Obtain the transfer function $\mathbf{H}(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_i}$ of the following circuit. **Note** that there is a "typo" in the circuit figure, and the voltage source should be labeled \mathbf{V}_i .

UMBC CMPE306 Fall 2019 Homework L06 Assigned Dec 2, 2019 Due Dec 9 2019. Page 3 of 3

